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Abstract 

Major changes are expected under ongoing climate change, especially in mountain 

areas. Models that predict the vulnerability of the biodiversity by incorporating the intraspecific 5 

variation are rapidly emerging. They enable a better comprehension of the vulnerability within 

the species level. Here, we investigated the vulnerability of the Apollo - a mountain butterfly - 

under climate change. Based on the genetic data of 293 Apollo spread in French mountains 

obtained by ddRAD sequencing method, a genetic environment association approach was 

performed, using RDA, to incorporate the local adaptation as intraspecific variation. Then, the 10 

disturbance of this genetic environmental association was calculated under future climatic 

conditions as a metric of maladaptation called genomic offset. Our results showed patterns of 

local adaptation with the identification of 32 loci that seem to be close to genomic regions 

involved in adaptation to cold and seasonal temperature and high precipitations and involved 

in ongoing adaptation to warm temperature and low and seasonal precipitations. Besides, we 15 

also identified areas where the vulnerability of Apollo to climate change will be important. 

Indeed, we found that the Pyrenees, Northern Alps, and South of the Central Massif will be 

affected by an important disruption of the genetic environment association and the Cévennes, 

Southern Alps and Western of the Pyrenees will face climatic conditions outside the current 

adaptive range. This study has provided some information about the patterns of local adaptation 20 

occurring in the French population of Apollo and his vulnerability under changing climate. This 

could be the starting point for further studies investigating these patterns through, for instance, 

common garden experiments.  
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INTRODUCTION 35 

Climate change is one of the main growing threats for biodiversity. It affects ecosystems 

through changes in environmental conditions inducing modifications of biotic interactions, 

selective pressure, or spatial distribution of favourable habitats (Díaz et al. 2019). According 

to climate modelling, the global mean temperature has already increased by 1.1 degrees since 

the pre-industrial period (1880-1900) (IPCC, 2022) and will continue to increase in the years 40 

to come as well as the frequency of extreme climatic events, affecting ecosystem functioning 

as a whole (Christidis et al. 2015). There are already some evidence of the impact of climate 

change at community, species and population levels like decline, extinction, shift in the 

phenology or modification of the geographic range (Chen et al. 2011; Hill et al. 2021). Indeed, 

in response to changing environments, populations can move or adapt (Chevin et al. 2010).   45 

Investigating and predicting the effects of climate change on biodiversity through the 

development of diverse models was, and still is, one major objective of many researches. At or 

above the species level, species distribution modelling (SDM) has been widely used to predict 

the spatial distribution of species or communities to changing environmental conditions by 

quantifying the correlation between current distributions of species and environmental drivers 50 

(Miller 2010). These models identify environmental conditions which are required for species 

and then project the shift in the spatial distribution of species, using prediction of future climatic 

conditions (Miller 2010). However, considering for example the intraspecific variation in the 

form of standing adaptive genetic variation (SAGV) - the pre-existing genetic variation at loci 

involved in adaptation (Chhatre et al. 2019) - seems necessary since natural forces such as 55 

selective pressure often varies across space inducing genomic divergences between populations 

due to specific genetic - environmental associations (Kawecki & Ebert 2004). Indeed, the 

presence of local adaptation has been demonstrated in many species. It is characterized by 

genetic variations between populations resulting from evolutions to locally optimal phenotypes 

in response to local environment (Hereford 2009). SAGV can therefore be non-randomly 60 

distributed along the geographic area of the species, and as a result, the impacts of climate 

change may vary among populations (Razgour et al. 2019).  

Recent studies have tackled this limitation by using genomic approaches which 

incorporate adaptive genetic variation to identify the most at-risk populations facing climate 

change (Fitzpatrick & Keller 2015). Indeed, maladaptation of populations - when phenotypes 65 

of individuals are distant from the optimal phenotype in a given environment - depends on both 

the selective pressure induced by changing environment and the genetic composition of 
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populations (Brady et al. 2019). Studies working on maladaptation generally first search for 

gene - environment associations using genetic-environment association (GEAs) methods 

(Forester et al. 2018; Razgour et al. 2019) such as Redundancy Analysis (RDA) (Legendre & 70 

Legendre 2012). However, discriminating genetic variations associated with environmental 

factors from genetic variations associated with neutral mechanisms like historical range 

movements of species or isolation by distance (IBD) - the increase of genetic differentiation 

between populations as the geographical distance increase (Wright 1943) - can be difficult 

(Rellstab et al. 2015). Indeed, neutral processes such as genetic structuration or IBD might, in 75 

some cases, produce similar patterns to those resulting from gene - environment associations 

(De Mita et al. 2013). To improve the identification of actual adaptive genetic variation linked 

with environmental variations, these models can be corrected for neutral processes (Rellstab et 

al. 2015). The identified genetic variation correlated with environmental drivers with GEA’s 

method is then used to predict the mismatch of populations between current and required 80 

adaptive genomic compositions to maintain their current fitness under changing climatic 

conditions (Capblancq et al. 2020a). Various metrics of climate maladaptation, such as the 

genomic offset (Fitzpatrick & Keller 2015), can be used to predict the response of organisms 

to changing environments.  

Mountain biodiversity is especially vulnerable to climate change (Parmesan 2006). 85 

Indeed, the modifications of environmental conditions have been and will continue to be 

particularly important in mountain habitats with rising air temperatures and radiative forces. 

They induce more frequent long-lasting droughts, the reduction of the ratio snow to rainfall and 

the ice sheet (Nogués-Bravo et al. 2007; Huss et al. 2017). These changes can lead to negative 

effects on cold-adaptive populations and species through shifts in the phenology, habitat loss 90 

or direct biological effects (Pauli et al. 1996; Descimon et al. 2006). It is then expected that 

populations of mountain habitats will face a more severe maladaptation due to climatic changes.  

To investigate this assumption, we conducted a study on the demes of an iconic and 

endangered grassland butterfly of Eurasian mountains, the Apollo, Parnassius apollo. This 

species and more widely ectotherms species are expected to be particularly vulnerable to 95 

climatic changes especially to temperature fluctuations since they cannot regulate their body 

temperature by using metabolic heat (Sheridan & Bickford 2011; Kingsolver et al. 2013). 

Besides, his long-standing decline since the end of The Last Glacial Maximum (LGM) – 

exacerbated since the last 70 years - could highlight his vulnerability to climate change 

(Nakonieczny et al. 2007). Considering this, we suspect that this species could be seriously 100 

subject to future maladaptation due to climatic changes. Given the large distribution of Apollo 
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in Eurasia and more locally in the studied area, we expect to find signals of local adaptation 

through genetic variation correlated with climatic variables.  

This study aims to: (I) establish if there is adaptive genetic variation linked to climatic 

drivers in the studied area and identify the climatic factors that explain the most the adaptive 105 

genetic variation, then (II) to predict the potential maladaptation of Parnassius apollo to future 

climatic conditions with metrics considering the adaptive genetic variation.  

MATERIALS AND METHODS 

Study system and sampling 
The Apollo, Parnassius apollo, is an iconic mountain butterfly species. It is present in 110 

small populations widely distributed across Eurasia in open, rocky Palearctic habitats 

(Brommer & Fred 1999). In France, it is mostly in mountains between 1000 and 2400 m.a.s.l 

(meters above sea level). This species is univoltine, its eggs winter on stems under the snow 

protecting them from frost events, its caterpillars feed mostly on Sedum sp and imago flight 

period is from May to September (Deschamps-Cottin et al. 1997). Its population size 115 

dramatically declined during the past 70 years to the point that this species is classified as 

“vulnerable” by the IUCN and protected in Europe by the annexe IV of the appendix II of the 

Habitat Directive of the European Union. This decline can be attributed to a combination of 

factors such as habitat loss, genetic erosion or long-term climatic changes (Nakonieczny et al. 

2007). Examples of local extinction due to climatic events have been identified in France like 120 

in Causse of Larzac in the 1980’s (Descimon et al. 2006).  

The sampling was conducted in 2019, 2021 and 2022. 317 butterflies were sampled 

accross 96 localities spread into French mountains (Ardèche (2), Ariège (4), Auvergne (6), 

Bauges (7), Belledonne (4), Cévennes (2), Chartreuse (9), Devoluy (3), Ecrins (9), Hautes-

Pyrénées (3), Haute-Savoie (3), Jura (9), Mercantour (4), Mont Ventoux (5), Pyrénées-125 

Atlantiques (6), Pyrénées-Orientales (6), Queyras (9) and Vercors (5)). For each locality, 1 to 

10 individuals were sampled. The distance between the localities of the same massif greatly 

varies as well as the distance between the massifs. To reduce the impact of this study on the 

population of Apollo, only one-leg was collected for each butterfly to conduct the DNA 

extraction. For each individual, the coordinates of the capture point were also collected. 130 

Genetic data and SNP calling 
The genetic dataset was obtained by double-digest Restriction-site Associated DNA 

sequencing method (ddRADseq) (Peterson et al. 2012) using two enzymes sbf I (R1) and msp 

I (R2). Further filters were performed using Stacks software (Catchen et al. 2013). Genetic 

fragments (R1 and R2) were filtered based on their quality score (> 90%) and length, keeping 135 
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only fragments of 110bp and cutting the longer ones. Remaining fragments were demultiplexed. 

Then, for every locus within an individual, R1 and R2 fragments were merged and mapped onto 

the reference genome of Apollo (Podsiadlowski et al. 2021) and SNPs calling was performed.  

 Finally, we did - using vcftools software (Danecek et al. 2011) - a series of filters to 

retain only the most accurate variants for further analysis. We retained SNPs present in at least 140 

70% of all individuals and minor allele count of 3 (avoiding rare alleles and keeping only loci 

with variation), with reads coverage between 5 and 150 (to reduce sequencing error and 

repeated sequences/pseudogenes) and only 1 SNP every 220 pb (reducing linkage 

disequilibrium between SNPs). From this SNPs dataset, we removed individuals with more than 

40% missing data and we were left with 1999 SNPs for 293 individuals. For genetic structure, 145 

we performed a more stringent filtering to reduce the bias of position in the PCA space due to 

missing data (Reeves et al. 2016). We kept SNPs only present in 95% of individuals (558 

SNPs). Missing data were imputed with the median genotype of all the individuals. 

Climatic data  
 Environmental data at high resolution were used to explore the influence of climatic 150 

factors on the genetic variation and to identify the main drivers of this variation. Present and 

future environmental data were extracted from WorldClim (Fick & Hijmans 2017) - at 30 arc 

second (~1km²) resolution - for every individual using the coordinates (longitude and latitude) 

of the capture point. Indeed, a previous study of Brommer & Fred (1999) on Apollo estimated 

- using capture- mark- recapture - that adults were not so mobile with a mean distance between 155 

the capture and recapture points of less than 400 meters. 8 variables were pre-selected including 

6 bioclimatic (bio1, 2, 3, 4, 12, 15) variables (see table 1) and 2 other variables (snow cover 

days and mean humidity). These variables are known to be involved in local adaptation in some 

species of butterflies or to be relevant according to the ecology of Apollo (Roy et al. 2015; 

McDermott Long et al. 2017) and they are predicted in the future by climatic models. To avoid 160 

multicollinearity, we only retained bio 1, 2, 4, 12 and 15 (see table 1) because they were not 

too correlated (< 0.7).  

 

Variable Signification Abbreviation Analysis 

Bio1 Mean annual air temperature an_tc PCA, pRDA, RDA, SDM 

Bio2 Mean diurnal air temperature range diur_range_tc PCA, pRDA, RDA, SDM 

Bio3 Isothermality  SDM 

Bio4 Temperature seasonality tc_se pRDA, RDA, PCA 

Bio7 Annual range of air temperature  SDM 

Bio8 Mean daily mean air temperatures of the wettest quarter  SDM 

Table 1: Signification of the climatic variables used. 

 

 

Variable Signification Abbreviation Analysis 

Bio1 Mean annual air temperature an_tc PCA, pRDA, RDA, SDM 

Bio2 Mean diurnal air temperature range diur_range_tc PCA, pRDA, RDA, SDM 

Bio3 Isothermality  SDM 

Bio4 Temperature seasonality tc_se pRDA, RDA, PCA 

Bio7 Annual range of air temperature  SDM 

Bio8 Mean daily mean air temperatures of the wettest quarter  SDM 

Bio9 Mean daily mean air temperatures of the driest quarter  SDM 

Bio12 annual precipitation amount an_precip PCA, pRDA, RDA, SDM 
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Present climatic data are the means for the period 1970-2000. Future climatic data are 165 

the mean values predicted by the climatic model IPSL-CM6A-LR SSP3-7.0 (O’Neill et al. 2016) 

for the years 2060 to 2080. Present and future climatic data were standardized together (means 

and standard deviations) allowing the comparison of indices based on these climatic factors 

(Legendre & Legendre 2012).  

We also performed a principal component analysis (PCA), using core R-package (R 170 

core Team 2022), with the 5 climatic factors retained for the 293 individuals to characterize the 

climatic environment of the sampling (figure 1) and identify the mains climatic gradients. 

Apollo ‘s geographic range studied 
To interpolate in space the indexes calculated in this study, we needed a map of Apollo’s 

presence in the French and also in the Pyreneans Spain and a part of Swiss and Italian Alps 175 

(extent:  longitude [-2;8] and latitude [42;47]). This map was estimated with SDM analysis 

(using crossvalidation) from Maxent software (Phillips et al. 2004). We performed this analysis 

by using filtered Gbif occurrences of Parnassius apollo in this area (4704 presence 

occurrences), 10 environmental factors from Chelsa (Karger et al. 2017) that were not too 

correlated (<0.7) including: bio1, 2, 3, 7, 8, 9, 12, 15, hurs-mean and sfcWind_mean (see table 180 

1) and a map of the probability of presence in the same area of Sedum album, the most common 

host plant for Apollo (Deschamps-Cottin et al. 1997) that were also obtain by SDM analysis 

using filtered Gbif occurrences (12000 presence occurrences) and the same factors used above. 

The geographic range of Apollo was obtained by selecting a minimum presence probability 

equals to the lower presence probability of a sampled point (all points with probability > 0.2).  185 

Neutral processes  
Considering nonadaptive processes when looking for relations between adaptive genetic 

variation and environmental factors can be useful. For instance, the spatial structuration 

between individuals due to IBD, or historical demography can, in some cases, generate similar 

patterns to those observed due to local adaptation (De Mita et al. 2013). To account for the IBD, 190 

we used the coordinates of each individual (Orsini et al. 2013). To account for the historical 

demography and other neutral processes, we conducted an analysis of the genetic structure. We 

performed a PCA analysis with the data set containing 558 SNPs using the pcadapt R-package 

Bio9 Mean daily mean air temperatures of the driest quarter  SDM 

Bio12 Annual precipitation amount an_precip PCA, pRDA, RDA, SDM 

Bio15 Precipitation seasonality precip_se PCA, pRDA, RDA, SDM 

Hurs-mean Mean monthly near-surface relative humidity  SDM 

SfcWind_mean Mean monthly near-surface wind speed  SDM 
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(R core Team 2022). We used for each individual their scores into the two first PCA axes as 

proxies of the genetic structuration according to Capblancq & Forester (2021)  195 

Variance partitioning  
One of the hypothesis in GEA’s analysis is that the environment explains some of the 

genetic variations (Rellstab et al. 2015). In order to confirm this, we needed to unravel patterns 

of genetic variation correlated to the environment from similar patterns arising from genetic 

structuration or IBD. To do this, we first performed a redundancy analysis (RDA), using vegan 200 

R-package, with the 1999 SNPs as response variable and the climatic factors, the coordinates 

and the two first axes of PCA as explanatory variables (full model). Then, we did partial 

redundancy analysis (pRDA) to visualize the contribution of each pool of variables in the total 

explained variation. This type of analysis enables to perform a RDA after removing the variance 

of the response variables (ex: genetic variation) explained by the covariables and also after 205 

removing the variance of the explanatory variables (ex: climate) explained by the covariables. 

To do this, we performed the RDA on the residuals of the two previous RDA: one between the 

response variables and covariables and one between the explanatory variables and the 

covariables.  Therefore, working on residuals enables to visualize the importance of each pool 

of factors (climate, geography, and genetic structuration) after removing the effects of others. 210 

We did pRDA for each of the three pools of variables. The full model provides the total 

explained variance and informs on the contribution of each group of factors on the variance by 

comparing the pRDA results to the full model (table 2). The effect of the geography was 

marginal, thus, for further analysis we would not consider this variable. 

Gene - Environment association  215 

After looking for the importance of climatic variables on the genetic variation, we 

searched to identify genetic variants associated with some of these factors, according to the 

procedure in Capblancq and al. 2021. We performed a pRDA with the set of 1999 SNPs as 

response variable and the climatic factors as explanatory variable after removing the effect of 

the genetic structure. Then, we identified SNPs with an atypical projection onto the 2 first axes 220 

of the pRDA compared to the projection of the majority of SNPs (later called outliers). To 

realize this identification, we followed the genome scan procedure of Luu et al., (2017) to 

transform the Mahalanobis distance into a P-value for each variant. To minimize the false 

discovery rate, we applied a Bonferroni correction and retained only variants with a p-value 

lower than 5.00 e-6.  225 
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Adaptive space 
From the outliers, we performed an RDA to create an adaptively enriched RDA space 

to identify the main climatic drivers of the adaptive variation and visualize the adaptive genetic 

variation across the Apollo’s geographic range studied. Then, for each RDA axis retained, we 

calculated an index that uses the scores of the climatic variables along the RDA axis, coming 230 

from the relations between the climatic variables and the variants, to interpolate/extrapolate the 

values of RDA in areas where the climatic data are available according to the formula in Steane 

et al. 2014:      𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = ∑ 𝑎𝑖
𝑛
𝑖=1 𝑏𝑖  

Where a is the value of the standardised climatic factor, b is the score of the climatic factor on 

the RDA axis considered and i corresponds to the different climatic factors used to construct 235 

the RDA model. These RDA values were calculated for the first axis of RDA along the Apollo’s 

geographic area studied. We also estimated these RDA’s values into future climatic conditions 

by using the future climatic dataset of variables.  

The potential impact of climate change 
The predictions of the adaptive composition were used to represent the range and density 240 

of RDA current and future values along the geographic range. The range of values that regroups 

99% of the current data was considered to be the current climatic range of the adaptive gradient. 

Then, we identified as “outsiders” all the future predicted values which were outside this range.  

These RDA values were also used to estimate the change in the adaptive composition 

needed to face climatic changes along the studied area. We calculated a metric proposed by 245 

Fitzpatrick and Keller (2015) called “genomic offset”. To do so, we calculated the Euclidian 

distance between the current and future adaptive compositions for each pixel. The present and 

future RDA values projected on the map (figure 5) were scaled together between -1 and 1 to 

enable the comparison between them. The values of genomic offset were also scaled between -

1 and 1 (figure 6).  250 

Population level metrics: PAI and SAGV 
We also calculated two other metrics at the massif level to further investigate the 

standing adaptive genetic variation across the studied area. We based these analysis at the 

massif level to have a sufficient number of individuals (at least 5) to calculate metrics of genetic 

diversity (Sherpa et al. 2022). We removed the Hautes-Pyrénées massif because only 2 255 

individuals remained after the filtration. The 17 other massifs were retained with 7 to 28 

individuals. We calculated the SAVG per massif as the mean frequency (p*q) of the SNPs 

outliers. We also wanted to estimate the extremeness of the massifs along the adaptive gradient 

using the PAI index which is the mean of the absolute differences for each SNPs outliers 
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between the allele frequency of the massif compared to the mean allele frequency of all the 260 

massifs for the considered SNP (Capblancq et al. 2020b). However, we found that this metric 

can be biased by a sampling effect. Indeed, it estimates the extremeness of a massif compared 

to other massifs along the adaptive gradient. However, if the majority of the massifs are extreme 

then the most important values of PAI will be the actual less extreme massifs. We proposed 

another metric not biased by the sampling, the Specificity index (SI). We calculated for each 265 

variant of a massif the absolute difference between his allele frequency and 0.5 and then, we 

mean these results for all the variants per massif: 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 =
(∑  |𝐴𝐹𝑖−0.5 |

𝑛

𝑘=𝑖
)

∑𝑖
 

Where AF is the allele frequency and i is the SNP considered. This index ranges from 0 (the 

mean allele frequency is 0.5 in the massif) to 0.5 (alleles are fixed in the massif regardless of 

the frequency: 0 or 1). We also calculated these 2 metrics for the neutral loci to compare the 270 

patterns observed between adaptive and neutral loci. Neutral loci were obtained by excluding 

the outliers from the dataset of 1999 SNPs. SGV and SI metrics were then calculated on the 

1967 neutral loci. 

RESULTS 

Climatic environment  275 

Figure 1 represents the 

results of the PCA realised on the 

sampling points and their 

climatic environment. The 

position of the points on this 280 

space depends on their values for 

the 5 climatic factors considered. 

We retained only the two first 

axes because they explain the 

majority of the variance (72.4%). 285 

Two main climatic gradients can 

be identified. PC1 axis is driven 

by the annual temperature, 

diurnal range of temperature 

and seasonality of the 290 

precipitation 

Figure 1: Principal component analysis where the black arrows 

represent the climatic factors and each points represent a sampled 

locality. The colours of the points correspond to the different massifs. 

 

Figure 2: Principal component analysis where the red arrows represent 

the climatic parameters and each points represent a sampled locality. 

The colours of the points correspond to the different massifs. 
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opposed to the annual precipitation. Along this axis, we can identify groups of massifs with, on 

the negative values, the Cévennes, Mont Ventoux, Pyrénées-Orientales or Mercantour and 

along the positive values the Jura, Bauges, Chartreuse, Belledonne or Queyras. On the second 

PCA axis, we can identify a gradient mostly driven by the seasonality of the temperature and 295 

the diurnal range of temperature on one side and by the seasonality of the precipitation on the 

other. Groups of massifs can also be identified with Ariège, Ecrins and Pyrénées-Atlantiques 

for example along the positive values and with Auvergne, Mont Ventoux or Cévennes along 

the negative values. Besides, within a massif, the position of the points can be very different 

such as the Vercors, Pyrénées-Atlantiques or the Mont Ventoux pointing the differences of the 300 

climatic conditions intra-massif in addition to the differences inter-massif. 

Genetic structuration 

Figure 2 represents the 

results of the PCA realised on the 

genetic markers. The position of 305 

the individuals in this space 

depends on their genetic 

composition for the 558 SNPs 

considered. We only kept the 2 

first axes because they explain 310 

the majority of the variations 

(65.2%). We can see that 4 

genetic groups can be identified: 

Auvergne, Pyrénées, Ardèche/ 

Cévennes and the Alps. 315 

 

 

 

 

 320 

Variance partitioning  
 The results of the RDA full model and pRDA for the climatic, genetic structuration and 

geographic predictors are shown in table 3. 

Figure 2: Principal component analysis on the genetic markers where each 

point represents a sampled locality. The colours of the points correspond to 

the different massifs. 
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 325 

The full model explains 10% of the genetic variation. The climate represents 26% of the 

explainable genetic variation (2.6% of the total variation), the structure represents 16% (1.6% 

total variation) and the geography only 9% (0.9% total variation). Almost half of the explainable 

variance cannot be separated from those 3 pools of variables suggesting a strong covariation 

between the neutral mechanisms and climatic drivers as expected (De Mita et al. 2013).  330 

Gene - environment association and adaptive space 
The pRDA conditioned only 

by the structure was performed and 

only the two first axes were retained 

(RDA1 35% and RD2 25%) to select 335 

the outliers. After performing the 

genome scan procedure, 32 SNPs 

were identified to be the most 

correlated to climatic drivers and 

considered as outliers. The adaptive 340 

enriched space was realised on these 

outliers (figure 3). Figure 3 shows the 

position of the outliers and the 

position of the individuals, based on 

their allelic frequencies for the 345 

considered outliers, along the first 

two RDA axes. The vast majority of 

the variance is explained by the first 

RDA axis (86.5% versus 5.1% for 

RDA and pRDA models Inertia R² Explainable 

variance 

(percentage) 

Total variance 

(percentage) 

Full model: F ~ clim. + struc. + geog. 199.1 0.10 100 10.0 

     Pure climate: F ~ clim. | (struc. + geog.) 52.3 0.026 26 2.6 

     Pure structure: F ~ struc. | (clim. + geog.) 30.9 0.016 16 1.6 

     Pure Geography:  F ~ geog. | (clim. + struc.) 18.8 0.009 9 0.9 

Confounded climate / structure / geography 97.1  49 4.9 

Total unexplained 1800   90.0 

Total inertia 1999   100 

 

 

Figure 4: RDA analysis with the 32 outliers as response variable and the 

5 climatic parameters as explainable parameters. The black arrows 

represent the climatic parameters, the orange cross represent the 

position of the outliers on this RDA space and the points represent the 

position of the sampled localities in this RDA space. Colours correspond 

to the different massifs. 

 

Figure 3: RDA analysis with the 32 outliers as response variable and 

the 5 climatic factors as explainable variables. The black arrows 

represent the climatic factors, the orange crosses represent the 

position of the outliers on this RDA space and the points represent 

the position of the sampled localities. Colours correspond to the 

different massifs. 

 

 

Figure 3: RDA analysis with the 32 outliers as response variable and 

the 5 climatic parameters as explainable parameters. The black 

arrows represent the climatic parameters, the orange cross 

Table 3: Variance partitioning between the climate, structure, and geography. The full model is used as a reference to 

calculate the percentage of explainable variance for each pool of variables. 

 

 

Table 4: Variance partitioning between the climate, structure, and geography. The full model is used as reference to 

calculate the percentage of explainable variance by each pool of parameters. 
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RDA2). Therefore, for further analysis we only kept this axis. We can observe that the first 350 

RDA axis is mostly correlated with the seasonality of the precipitation and the annual 

temperature on one side and with the annual precipitation and seasonality of the temperature on 

the other. Some massifs are grouped together such as the Cévennes, Mercantour, Ardèche and 

Mont Ventoux along the positive value of RDA1 and on the other side, the massifs of Auvergne, 

Jura, Ariège and Queyras are also grouped. Furthermore, some massifs are in the middle of the 355 

gradient such as the Northern Alps with Chartreuse, Bauges, Belledonne, Vercors and the 

Pyrénées-Atlantiques and Orientales. We can see that these results are quite similar to those of 

figure 1. Indeed, the groups of massifs and their position along the climatic variables are 

comparable between these two analyses.   

 The potential impact of climate change 360 

The interpolation/extrapolation of the 

values of RDA1 (adaptive composition) in current 

and future climatic conditions along the studied 

area and characterization of the current climatic 

range of the adaptive gradient are presented in 365 

figure 4. First, we can see that the densities of 

current and future RDA values are quite different. 

Indeed, a shift of values seems to occur with a 

more important density of higher values in the 

future. Moreover, a significant proportion of RDA 370 

values in the future - 7.9 % - is outside the current 

climatic range of the adaptive gradient. 

 

 

 375 

 

 

 

 

 380 

 

 

Figure 4: Representation of the RDA values along 

RDA1. Colours correspond to the present (white) and 

future (grey). Dotted lines represent the interval where 

99% of the values are present. 

 

Figure 5: Representation of the adaptive values along 

RDA1. Colours correspond to the present (white) and 

future (grey). Dotted lines represent the interval where 

99% of the values are present. 
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Figure 5: Maps representing the present (A) and future (B) adaptive enriched RDA spaces along the studied area. 

Colours represent the range of the RDA values. Black points represent the localities sampled.  

 

Figure 6: Maps representing the present (A) and future (B) adaptive enriched RDA space along the study area. Colours 
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Then, we projected the predicted current and future adaptive compositions along the 

studied area to visualize the adaptive gradient and identify the outsider’s area (figure 5). We 

can see on figure 5.A that areas in warm/high seasonal precipitation, low altitude such as the 385 

Cévennes, Ardèche and Southern Alps have higher RDA values than the cold/high seasonal 

temperature, high precipitation, and high-altitude areas like the Northern Alps, including the 

Jura, and the central Pyrenees. The future adaptive gradient, figure 5.B shows overall that every 

area will face an increase in the RDA values. This observation is particularly verified in areas 

with currently low RDA values such as the Jura. Moreover, in this figure, we can see that the 390 

outsider’s areas are exclusively in areas with current high RDA values like the Cévennes. 

 We also calculated and projected the genomic offset in the studied area. These results 

are presented in figure 6. We can 

see that the change in adaptive 

allelic frequency required will 395 

be much more important in the 

Northern Alps than in the South, 

quite high and homogeneous in 

the Pyrenees with higher change 

required in the Pyrénées-400 

Atlantiques and more important 

in the South of the Central 

Massif (Cévennes, Auvergne, 

Ardèche) than in the North. 

 405 

Massifs 

 

SAGV SI 

adaptive 

SGV SI neutral 

Cévennes 0.202 0.189 0.038 0.446 

Ardèche 0.050 0.428 0.031 0.454 

Mont Ventoux 0.032 0.463 0.052 0.430 

Pyrénées-

Orientales 
0.030 0.462 0.046 0.440 

Chartreuse 0.027 0.468 0.053 0.428 

Devoluy 0.027 0.469 0.051 0.432 

Mercantour 0.026 0.471 0.051 0.431 

Ecrins 0.026 0.472 0.052 0.431 

Bauges 0.025 0.472 0.053 0.429 

Ariège 0.025 0.468 0.045 0.436 

Then, we calculated the SAGV 

and the specificity index (SI) for the 

outliers and the SGV and SI for the 

neutral SNPs. The results of these four 

indexes are presented in table 3. We can 

see that the values of SGV and SI for the 

neutral SNPs vary much less along the 

massifs than the SAGV and adaptive SI. 

We overall observed high values of SI  

 

 

Figure 6: Map representing the values of genomic offset along the 

studied area. Colours represent the range of the genomic offset values. 

Black points represent the localities sampled. 

  

Table 3: Massif-level indices of the variation and fixation of the standing 

adaptive (SAGV/ SI adaptive) and neutral (SGV/SI neutral) genetic variation. 
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and low values of SGV. However, it seems 

that the SGV is less important in the 

Central Massif than in other massifs. 

Concerning the SAGV, the variations are 

much more important ranging from the 410 

Cévennes with high values (0.202) to the 

Jura with low values (0.012). The same observation can be made with the adaptive SI with 

values ranging from the Cévennes with lower values (0.189) to the Jura with higher values 

(0.485). Besides, some massifs can also be identified with overall higher values of SAGV and 

lower of SI: the Cévennes, Ardèche, Mont Ventoux and Pyrénées-Orientales. On the contrary, 415 

we can notice that the Jura has the lowest values of SAGV and the highest of SI. The rest of the 

massifs is intermediate for these metrics.  

DISCUSSION 

Overview of the genetic - environmental association 
The first goal of this study was to investigate the presence of local adaptation to climate 420 

within the studied area of Apollo and disentangle the drivers of genetic variations. First, it seems 

that there are some important climatic variations in the studied area with the identification of 

two climatic gradients in figure 1. These climatic variations indicate that the selective pressure 

could be different within the studied area which may lead to local adaptation. Besides, a 

significant proportion of genetic variation could be attributed to the 5 climatic factors retained 425 

(table 2), suggesting that a part of the genetic variation can be explained by the climatic 

variables. These two elements suggest that along the studied area, there might be genetic 

environment association and then potentially local adaptation like in Hecht and al 2015 where 

5.8 % of the total genetic variance were explained by the climate and this was sufficient to 

identify 568 loci close to genomic regions potentially involved in adaptation (outliers).  430 

The results of the GEA analysis seem to confirm this assumption with the identification 

of 32 SNPs that are greatly correlated to climatic factors. These outliers are mostly correlated 

to the first axis of RDA (85%) which is driven by a similar climatic gradient (PC1) identified 

in figure 1 which is the seasonality of precipitation and annual temperature on one side and 

annual precipitation and seasonality of temperature on the other. Moreover, the results of 435 

figures 1 and 3 showed that the positions of the individuals per massifs in the climatic space 

and adaptive space are quite similar. This result could confirm that the loci outliers greatly 

characterise the first axis of the climatic space. Besides, this gradient seems to be the result of 

the confluence of several gradients such as the continentality with colder temperature in 

Belledonne 0.024 0.472 0.050 0.432 

Pyrénées-

Atlantiques 

0.023 0.474 0.045 0.436 

Queyras 0.022 0.476 0.052 0.430 

Haute-Savoie   0.021 0.477 0.052 0.430 

Vercors 0.021 0.477 0.054 0.428 

Auvergne 0.020 0.470 0.030 0.457 

Jura 0.012 0.485 0.045 0.437 
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continentality area (Jura), the elevation with colder and more seasonality of temperature and 440 

high precipitation regions in high altitude (Centre of Pyrenees and Northern Alps) and the 

latitude with warmer temperature and higher seasonality of precipitation in the South (Southern 

Alps). Overall, this climatic gradient is a common gradient found in many studies especially 

the ones focusing on mountain species (Karl et al. 2010; Muir et al. 2014; Capblancq et al. 

2020b). Moreover, the results are in accordance with previous studies working on Parnassius 445 

apollo (Ashton 2002; Sbaraglia et al. 2023) showing that the temperature and the precipitation 

are the main drivers for the favourability of the habitat.  

Patterns of adaptation 
The previous results suggest that along the most important climatic gradient identified 

in the studied area, there seems to be some signals of adaptation. The results of table 3 enable 450 

to further investigate the signals identified. Indeed, under a pattern of directional selection, we 

expected to find a low SAGV and a high adaptive SI in both extremes of the climatic gradient 

(Holsinger 2001). In fact, the selective pressure is expected to be greater, inducing a strong 

selection resulting in an important allelic fixation for the adaptive loci. This would lead to a 

reduction of the SAGV and an increase of the adaptive SI as found in other studies (Chhatre et 455 

al. 2019; Capblancq et al. 2020b). However, we did not find this exact pattern along the studied 

area. Indeed, we found this pattern for the extreme side of cold/ seasonal temperature and high 

precipitation of the gradient with the Jura for example but in the other extreme part of the 

gradient with Cévennes, Mont Ventoux or Ardèche for example, we did not find a reduction of 

the SAGV but on the contrary an increase. These results are quite surprising, especially because 460 

the neutral genetic variation (SGV) is low in the majority of these extreme massifs. Indeed, if 

the amount of neutral genetic variation were high, this could have been an evidence that 

something is happening in these massifs and impacts the genetic variation like a high migration 

rate (Berthier et al. 2006; Alcala et al. 2013). This migration would have maintained an 

important genetic variation on the neutral markers and on the adaptive ones if the gene flow 465 

was maladaptive like in Aubree et al. 2023. However, this was not the case in the studied area 

according to the SGV. 

One hypothesis to explain these results can be made by looking at the ancestral 

movements of Apollo in this area. Indeed, Kebaïli and al. 2022 found that, between the last 

interglacial (LIG) and the last maximum glacial (LGM), climatic conditions in low altitude 470 

were favourable for Apollo because the air temperature was colder than currently. At the end 

of the LGM, Apollo have started to climb in altitude to avoid the warming. This ascension in 

altitude continued until, in some massifs, the Apollo reached the summit like in the Cévennes. 
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Then, the demes faced an important selective pressure because they are exposed to new 

environmental conditions. Under this selective pressure, some adaptive variants to warmer 475 

temperatures and more important seasonality of precipitation might have been selected in the 

demes. This hypothesis could explain the pattern observed. Indeed, the demes are potentially 

under ongoing selection that could explain why the SAGV are more important and the adaptive 

SI less important in the extreme part of the gradient associated with warmer temperatures and 

higher seasonality of precipitation. This hypothesis seems supported by the pattern observed in 480 

the other part of the gradient with the Jura for instance. Indeed, the individuals in this massif 

have the lowest amount of SAGV and the highest of adaptive SI and it is also the more extreme 

massifs for the cold and seasonal temperature and amount of precipitation (figure 1). This 

suggests that the outliers are mainly adaptive to this gradient and some variations present in 

demes under warmer temperature and more seasonality of precipitation are due to ongoing 485 

selection to new climatic conditions.  

To conclude, it seems that we found some outliers close to genomic regions involved in 

local adaptation by detecting a pattern that can be associated to a signal of adaptation to colder 

and seasonal temperature and important precipitation and also a pattern that can be referring to 

ongoing selection to warmer temperature and more seasonality of precipitation. However, we 490 

kept in mind that the dataset of genetic markers is quite low and that they only represent a very 

small proportion of the genome (less than 0.015%) due to the use of ddRADseq method. 

However, we still could have identified some signal of adaptation. Indeed, we made the 

hypothesis - according to the infinitesimal model suggested by Fisher in 1919 - that most 

phenotypes are the result of a huge number of genes with additive effect and not only one gene 495 

for one phenotype. Therefore, we surely did not find all the markers close to genomic regions 

potentially involved in the adaptation for this gradient. We also might not have identified all 

the gradients of local adaptation. Indeed, the other climatic gradient (PC2) in figure 1 is not 

identified by our GEA analysis. This could be due to an absence of adaptation to this gradient 

in the studied area or due to a weaker signal that was not detected by our analysis. Besides, we 500 

cannot exclude the hypothesis that a part of the signal of adaptation identified is biased by the 

discovery of false positives. Indeed, the important SAGV in the Cévennes could be explained 

by the fact that some outliers identified are neutral rare loci only present in this massif and 

because the Cévennes is the extreme part of one side of the gradient, this could lead to false 

positive if these alleles are only present in this massif. Nevertheless, we are quite confident in 505 

the general pattern discovered because we corrected the identification of outliers by the genetic 

structure (using pRDA) and by the Bonferroni correction to minimise the false positive. 
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Moreover, all the massifs with warmer temperature and important seasonality of precipitation 

(figure 1) have the same pattern of respective higher values of SAGV and lower values of SI 

and are in the same side of the adaptive enriched RDA space despite the fact that they are not 510 

closer genetically than other massifs according to the genetic structure analysis (figure 2).  

The vulnerability of Apollo to climate change 
 The second goal of this study was to investigate the potential maladaptation of Apollo 

to climate change. Indeed, major climate changes are expected to occur in the future and 

especially in altitude area (Nogués-Bravo et al. 2007; Huss et al. 2017). Thus, we suspected 515 

that the Apollo could be greatly impacted by climate change. First, we identified that in the 

future, 2060-2080 under the SSP 3-7.0, the adaptive space will be significantly different from 

the current adaptive space. Indeed, the results of figure 3 showed an important shift of RDA 

values to higher values in the future, indicating that the demes will face important climatic 

changes with warmer temperature and more seasonality of precipitation and will require a 520 

change in the adaptive genetic composition to face it. This pattern is overall observable for all 

the areas but mostly in current areas with low RDA values (figure 5). This result indicates that 

current demes adapted to cold and seasonal temperature and high precipitation will need an 

important change in the adaptive composition due to more severe changes in the climatic 

conditions. Indeed, the genomic offset of these areas such as the Pyrenees and Northern Alps 525 

is important. This result is in accordance with other studies indicating that species in altitude 

areas are predicted to be more impacted by climate change (Parmesan 2006). Massifs with high 

genomic offset and isolated like the Jura are also expected to be particularly vulnerable to 

climate change because they will need an important change in adaptive genomic composition 

but they are isolated from other massifs so the adaptive gene flow could be limited or 530 

impossible. Thus, this could have been interesting to look at other metrics which take into 

account the distance between massifs like the geographic offset proposed by Capblancq and al 

2020b to identify these isolated areas. 

We also found that some of the demes will, in the future, face climatic conditions that 

are not currently encountered by Apollo in the studied range (called outsiders). A part or the 535 

totality of these massifs - Cévennes, Southern Alps, Western of the Pyrenees - will be outside 

the current adaptive climatic range identified. This indicates that these climatic conditions have 

never been encountered by Apollo’s population in France and thus, we suspect that the fitness 

of these demes will be impacted and potentially drive the demes to extinction due to an 

incapacity to migrate in altitude anymore. However, we also found that the demes in warmer 540 
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and more seasonal precipitation regimes may be under ongoing selection, we might expect that 

they will select new adaptive genetic variation to these extreme future climatic conditions. 

Overall, we identified two types of areas that are mostly vulnerable to climate change: 

the areas with higher values of genomic offset: the Pyrenees, Northern Alps and South of the 

Central Massif, and the outsider’s areas: the Cévennes, Southern Alps and Western Pyrenees. 545 

However, we kept in mind that the information given by the values of genomic offset, without 

any link with the fitness, are limited (Capblancq et al. 2020a). Indeed, we have no clue if a 

genomic offset of 0.1 will be associated to an important reduction of fitness or on the contrary 

if a genomic offset of 5 will have a small impact on the fitness. Thus, the difference of values 

between areas are more informative than the values themselves. Furthermore, other adaptive 550 

gradients could occur in this species so values of maladaptation could be different with the 

addition of other gradients. Finally, the prediction of maladaptation is based on the hypothesis 

that the relation gene - environment identified is not the result of false positives. It could be 

interesting, for further studies, to use common garden experiments to test the relation gene - 

environment identified and to link the genetic offset with the fitness. 555 

Ideas of management such as assisted gene flow (AGF), “the managed movement of 

individuals or gametes between populations within species ranges to mitigate local 

maladaptation in the short and long term”(Aitken & Whitlock 2013), could emerge from these 

results to mitigate the maladaptation due to climate change. Indeed, some examples of 

successful AGF are present in the literature (Dixon et al. 2015; Hagedorn et al. 2021). However, 560 

it seems that there is no management that could directly assist the outsider’s area because they 

will encounter climatic conditions outside the adaptive range identified. Besides, we also need 

to keep in mind that many other factors could influence the future of Apollo in this area. Indeed, 

for example, the treeline will also change due to climate change with an expected migration of 

trees in altitude (Smith et al. 2009). Thus, the favourable habitats for Apollo are expected to be 565 

reduced. Moreover, these climatic changes will impact other species and we might expect that 

the close interaction butterflies/host plant can be disturbed, such as for the marsh fritillary 

species (Brunbjerg et al. 2017), impacting as well the repartition of favourable habitats. 

CONCLUSION 

This study is a first step to a better comprehension of the adaptive patterns occurring in 570 

Apollo along the Pyrenees, Western Alps, and Central massif. Indeed, our results seem to show 

a pattern of adaptation to colder and seasonal temperature and important precipitation plus an 

ongoing pattern of adaptation to warmer and seasonal precipitation. Moreover, our study 
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successfully incorporates genomic data to investigate the vulnerability of Apollo to climate 

change. Indeed, some areas were identified to be at risk in the future and needing an important 575 

change in the adaptative genetic composition or predicted to be outside the current climatic 

range. This study might be the starting point for further studies confirming the adaptive patterns 

with common garden and exploring the link between genomic offset and fitness.  
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CONTRIBUTION 

 on stage s’inscrit dans le projet Apollon (2019-2024) porté par Laurence Després au 

sein du Laboratoire d’Ecologie Alpine (LECA). Ce projet est financé par le LECA ainsi que 

par la DREAL Auvergne-Rhône-Alpes dans le cadre du plan National d’Actions en faveur des 750 

papillons de jour. La mise en place du projet et son suivi, la définition de la question de 

recherche ainsi que du protocole d’échantillonnage ont été réalisés par Laurence Després. Les 

échantillons ont été obtenus grâce à la collaboration de nombreux organismes : les 

Conservatoires des Espaces Naturels (Ariège, Haute-Savoie, PACA), le Parc National des 

Cévennes, de nombreux Parcs Naturels Régionaux (Chartreuse, Massif des Bauges, Haut-Jura, 755 

Volcans Auvergne), ainsi que de nombreuses Réserves Naturelles (Ardèche, Hauts de 

Chartreuse, Les Partias, Le Mantet) et Réserves Naturelles Nationales (Chastreix-Sarcy, Hauts-

Plateaux du Vercors, Vallée de Chaudefour , Gorges de Daluis  et également d’autres 

organismes (laboratoire, association …  comme la Société d’Histoire naturelle Alcide-

d’Orbigny, le Conservatoire Botanique National de Franche Comté, Cistude Nature, FLAVIA 760 

APE, la fédération des réserves Catalanes, le  uséum Nationale d’Histoire Naturelle et le 

Centre d’Ecologie Fonctionnelle et Evolutive.  L’extraction de l’ADN ainsi que la préparation 

des librairies ddRAD ont été réalisées par Delphine Rioux.  

La recherche bibliographique a été menée par Thomas Francisco. L’obtention des 

données climatiques (Chelsa et Worldclim) ainsi que des occurrences Gbif et leur filtration ont 765 

été réalisées par Thomas Francisco avec les conseils de Laurence Després et Thibaut 

Capblancq. Les analyses bio-informatiques sous Rstudio ainsi que la réalisation des résultats 

ont été réalisées par Thomas Francisco avec les précieux conseils de Laurence Després et 

Thibaut Capblancq. L’interprétation des résultats a été réalisée par Laurence Després, Thibaut 

Capblancq et Thomas Francisco. L’écriture du manuscrit a été réalisée par Thomas Francisco. 770 

Le manuscrit a été relu et commenté par Laurence Després. Ce stage a majoritairement été 

supervisé par Laurence Després ainsi que par Thibaut Capblancq qui ont su se rendre disponible 

pour répondre aux interrogations de tout type et apporter des suggestions / réponses face aux 

problèmes rencontrés.  
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